$6^{\text {th }}$ Grade Math Standards

Standard	Standard Description	Online Course Hierarchy	I can Statements
6.RP	Domain: Ratios and Proportional Relationships		
6.RP.A	Cluster: Understand ratio concepts and use ratio reasoning to solve problems		
6.RP.A. 1	1. Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. For example, "The ratio of wings to beaks in the birdhouse at the zoo was 2:1, because, for every 2 wings, there was 1 beak." "For every vote candidate A received, candidate C received nearly three votes."	2.1	- I can understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities.
6.RP.A. 2	2. Understand the concept of a unit rate a / b associated with a ratio $a: b$ with $b \neq 0$, and use rate language in the context of a ratio relationship. For example, "This recipe has a ratio of 3 cups of flour to 4 cups of sugar, so there is $3 / 4$ cup of flour for each cup of sugar." "We paid \$75 for 15 hamburgers, which is a rate of $\$ 5$ per hamburger."	2.1	- I can understand the concept of a unit rate a / b associated with a ratio a:b with $b \neq 0$, and use rate language in the context of a ratio relationship.
6.RP.A. 3	3. Use ratio and rate reasoning to solve real-world and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations.		
6.RP.A.3a	a. Make tables of equivalent ratios relating quantities with whole-number measurements, find missing values in the tables, and plot the pairs of values on the coordinate plane. Use tables to compare ratios.	2.1	- I can make tables of equivalent ratios relating quantities with whole-number measurements, find missing values in the tables, and plot the pairs of values on the coordinate plane; use tables to compare ratios.
6.RP.A.3b	b. Solve unit rate problems involving unit pricing and constant speed. For example, if it took 7 hours to mow 4 lawns, then at that rate, how many lawns could be mowed in 35 hours? At what rate were lawns being mowed?	2.1	- I can solve unit rate problems, including those involving unit pricing and constant speed etc.
6.RP.A.3c	c. Find a percent of a quantity as a rate per 100 (e.g., 30% of a quantity means $30 / 100$ times the quantity); solve problems involving finding the whole, given a part, and the percent.	2.2	- I can convert Percent - Fraction Decimals.
			- I can find a percent of a quantity as a rate per 100.
			- I can solve problems involving finding the whole, given a part, and the percent

Standard	Standard Description	Online Course Hierarchy	I can Statements

Standard	Standard Description	Online Course Hierarchy	I can Statements
6.NS.B. 4	4. Find the greatest common factor of two whole numbers less than or equal to 100 and the least common multiple of two whole numbers less than or equal to 12 . Use the distributive property to express a sum of two whole numbers 1-100 with a common factor as a multiple of a sum of two whole numbers with no common factor. For example, express $36+8$ as $4(9+2)$	1.5	- I can check the divisibility of numbers using divisibility tests.
			- I can identify prime and composite numbers.
			- I can write the Prime factorization of numbers.
			- I can find factors, multiples, GCF, and LCM.
			- I can factor out GCF using the distributive property.
6.NS.C	Cluster: Apply and extend previous understandings of numbers to the system of rational numbers.		
6.NS.C. 5	5. Understand that positive and negative numbers are used together to describe quantities having opposite directions or values (e.g., temperature above/below zero, elevation above/below sea level, credits/debits, positive/negative electric charge); use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation	1.6	- I can understand that positive and negative numbers are used together to describe quantities with opposite directions or values.
6.NS.C. 6	6. Understand a rational number as a point on the number line. Extend number line diagrams and coordinate axes familiar from previous grades to represent points on the line and in the plane with negative number coordinates.	1.6	- I can graph an integer as a point on the number line.
	a. Recognize opposite signs of numbers as indicating locations on opposite sides of 0 on the number line; recognize that the opposite of a number is the number itself, e.g., $-(-3)=3$, and that 0 is its own opposite.		
	b. Understand signs of numbers in ordered pairs as indicating locations in quadrants of the coordinate plane; recognize that when two ordered pairs differ only by signs, the locations of the points are related by reflections across one or both axes.		
	c. Find and position integers and other rational numbers on a horizontal or vertical number line diagram; find and position pairs of integers and other rational numbers on a coordinate plane.		

Standard	Standard Description	Online Course Hierarchy	I can Statements

Standard	Standard Description	Online Course Hierarchy	I can Statements

Standard	Standard Description	Online Course Hierarchy	I can Statements
6.EE.B	Cluster: Reason about and solve one-variable equations and inequalities.		
6.EE.B. 5	5. Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true.	4.4	- I can use substitution to determine whether a given number in a specified set makes an equation true.
6.EE.B. 6	6. Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number or, depending on the purpose, any number in a specified set.	4.4	- I can solve one-step equations in one variable using addition and division properties.
6.EE.B. 7	7. Solve real-world and mathematical problems by writing and solving equations of the form $\mathrm{x}+\mathrm{p}=\mathrm{q}$ and $\mathrm{px}=\mathrm{q}$ for cases in which p, q, and x are all nonnegative rational numbers	4.4	- I can solve real-world and mathematical problems by writing and solving equations of the form " $x \pm p=q$ " and " $p x=q$ " for cases in which p, q, and x are all nonnegative rational numbers.
	8. Write an inequality of the form $\mathrm{x}>\mathrm{c}$ or $\mathrm{x}<\mathrm{c}$		- I can use substitution to determine whether a given number in a specified set makes an inequality true.
6.EE.B.8	to represent a constraint or condition in a real-world or mathematical problem. Recognize that inequalities of form $x>c$ or $x<c$ have infinitely many solutions; represent	4.5	- I can recognize that inequalities of the form " $x>c$ " or " $x<c$ " has infinitely many solutions; it represents solutions of such inequalities on a number line.
	solutions of such inequalities on number line diagrams.		- I can write an inequality of the form " $x>c$ " or " $x<c$ " to represent a constraint or condition in a real-world or mathematical problem.
6.EE.C	Cluster: Represent and analyze quantitative relationships between dependent and independent variables.		
6.EE C. 9	9. Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation. For example, in a problem involving motion at a constant speed, list and graph ordered pairs of distances and times and write the equation $d=65 t$ to represent the relationship between distance and time.	4.6	- I can use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable.
			- I can analyze the relationship between the dependent and independent variables using graphs \& tables and relate these to the equation.

Standard	Standard Description	Online Course Hierarchy	I can Statements
6.G	Domain: Geometry		
6.G.A	Cluster: Solve real-world and mathematical problems involving area, surface area, and volume.		
6.G.A. 1	1. Find the area of right triangles, other triangles, special quadrilaterals, and polygons by composing them into rectangles or decomposing them into triangles and other shapes; apply these techniques in the context of solving real-world and mathematical problems.	5.1	- I can find the perimeter of polygons.
			- I can find the area of rectangles and squares.
			- I can find the area of right triangles, other triangles, special quadrilaterals, and polygons by composing them into rectangles or decomposing them into triangles and other shapes
6.EE.A. 2	2. Find the volume of a right rectangular prism with fractional edge lengths by packing it with unit cubes of the appropriate unit fraction edge lengths, and show that the volume is the same as would be found by multiplying the edge lengths of the prism. Apply the formulas $V=I w h$ and $V=b h$ to find volumes of right rectangular prisms with fractional edge lengths in the context of solving real-world and mathematical problems.		- I can find the volume of a right rectangular prism with fractional edge lengths.
		5.3	- I can solve real-world mathematical problems on volume.
6.G.A. 3	3. Draw polygons in the coordinate plane given coordinates for the vertices; use coordinates to find the length of a side joining points with the same first coordinate or the same second coordinate. Apply these techniques in the context of solving real-world and mathematical problems.	5.2	- I can draw polygons in the coordinate plane given coordinates for the vertices and, determine their name; find their area and perimeter.
6.EE.A. 4	4. Represent three-dimensional figures using nets made up of rectangles and triangles, and use the nets to find the surface area of these figures. Apply these techniques in the context of solving real-world and mathematical problems.	5.3	- I can represent 3D figures using nets made up of rectangles and triangles and use the nets to find the surface area of these figures.

LEARNING CENTER

Standard	Standard Description	Online Course Hierarchy	I can Statements
6.SP	Domain: Statistics and Probability		
6.SP.A	Cluster: Develop an understanding of statistical variability.		
6.SP.A. 1	1. Recognize a statistical question as one that anticipates variability in the data related to the question and accounts for it in the answers. For example, "How old am I?" is not a statistical question, but "How old are the students in my school?" is a statistical question because one anticipates variability in students' ages.	6.1	- I can understand and recognize a statistical question.
6.SP.A. 2	2. Understand that a set of data collected to answer a statistical question has a distribution that can be described by its center, spread, and overall shape.		
6.SP.A. 3	3. Recognize that a measure of center for a numerical data set summarizes all of its values with a single number, while a measure of variation describes how its values vary with a single number.		
6.SP.B	Cluster: Summarize and describe distributions.		
6.SP.B. 4	4. Display numerical data in plots on a number line, including dot plots, histograms, and box plots.	6.1	- I can display numerical data in dot plots and histograms.
			- I can organize data in Frequency Tables.
6.SP.B. 5	5. Summarize numerical data sets in relation to their context, such as by:	$\begin{gathered} 6.2 \text { and } \\ 6.3 \end{gathered}$	- I can find measures of center (mean, median, mode/range) and variability (mean absolute deviation) - I can find Quartiles, Interquartile Ranges, Outliers - I can interpret Five number summary - Box and Whisker Plot
	a. Reporting the number of observations.		
	b. Describing the nature of the attribute under investigation, including how it was measured and its units of measurement.		
	c. Giving quantitative measures of center (median and/or mean) and variability (interquartile range and/or mean absolute deviation), as well as describing any overall pattern and any striking deviations from the overall pattern with reference to the context in which the data were gathered.		
	d. Relating the choice of measures of center and variability to the shape of the data distribution and the context in which the data were gathered.		

